

Binding of [³H]PD 128907, a Putatively Selective Ligand for the D₃ Dopamine Receptor, in Rat Brain: A Receptor Binding and Quantitative Autoradiographic Study

Gregory N. Bancroft, B.S., Kimberly A. Morgan, B.S., Rebecca J. Flietstra, Ph.D., and Beth Levant, Ph.D.

[³H]PD 128907 has been proposed as a selective ligand for the D_3 dopamine receptor. This study characterizes the binding of this radioligand in rat brain using in vitro radioligand binding and autoradiographic methods. In radioligand binding studies, [³H]PD 128907 exhibited 0.3 nmol/L affinity for a single, low density site in ventral striatal membranes. The pharmacological profile for [³H]PD 128907 was similar to that of [³H](+)-7-OH-DPAT with the rank order of potency for dopamine agonists being PD 128907 ≈ 7-OH-DPAT ≈ quinpirole ≥ dopamine; for antagonists, spiperone > (+)-butaclamol ≈ domperidone ≥ haloperidol > SCH 23390. Guanyl nucleotides had no effect

on the binding of either ligand. These observations indicate labeling of a dopaminergic site with characteristics consistent with the D₃ receptor. In autoradiographic studies, highest densities of [³H]PD 128907–labeled sites were observed in islands of Calleja followed by the nucleus accumbens, nucleus of the horizontal limb of the diagonal band, the molecular layer of cerebellar lobule X, and the ventral caudate/putamen. [Neuropsychopharmacology 18:305–316, 1998] © 1998 American College of Neuropsychopharmacology. Published by Elsevier Science Inc.

KEY WORDS: $[^3H]PD$ 128907; $[^3H]7$ -OH-DPAT; D_3 dopamine receptor; Rat brain; Receptor binding; Receptor autoradiography

 $[^3H]PD$ 128907 has been identified as a putatively selective ligand for the D_3 dopamine receptor (Akunne et al. 1995). A member of the D_2 receptor family, the D_3 site is of particular interest because its mRNA is expressed preferentially in brain regions such as the nucleus accumbens, olfactory tubercle, and islands of Calleja

From the Department of Pharmacology (BL), Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.

Address correspondence to: Beth Levant, Ph.D., Department of Pharmacology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417.

Received March 14, 1997; revised August 14, 1997; accepted August 18, 1997.

(Bouthenet et al. 1991; Sokoloff et al. 1990). These brain regions are terminal fields of the mesolimbic dopamine projection that is hypothesized to be involved in producing psychotic symptoms in schizophrenia (Stevens 1973). Furthermore, unlike mRNA for the D₂ receptor, relatively little D₃ mRNA is expressed in the caudate/putamen (Bouthenet et al. 1991; Sokoloff et al. 1990). This suggests that the D₃ site may be a target for novel antipsychotic drugs that might be free of extrapyramidal effects. It has also been suggested that the D₃ receptor may play a role in the reinforcing properties of cocaine (Caine and Koob 1993) and might thus represent a potential target in the treatment of drug abuse.

Since the cloning of the D_3 receptor, several radioligands thought to be selective for this site have been synthesized including [3H]PD 128907 (R-(+)-trans-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[3,4-b]-

1,4-oxazin-9-ol]) (Akunne et al. 1995) and [3H]7-OH-DPAT (7-hydroxy-diphenylaminotetralin) (Lévesque et al. 1992). However, there is some controversy over the selectivity of [3H]7-OH-DPAT for the D₃ receptors over the D₂ (Gonzales and Sibley 1995). Interaction of the ligand with the sigma site has also been reported (Wallace and Booze 1995). Although confusion over the selectivity of [3H]7-OH-DPAT may be due to the use of different assay protocols, the conflicting reports have limited the utility of this ligand as a tool for the study of D₃ sites in brain. On the other hand, PD 128907 produced behavioral and neurochemical effects in brain suggestive of activity at the D₃ site (Pugsley et al. 1995). Likewise, [3H]PD 128907 exhibited significant selectivity in transfected cell lines (Akunne et al. 1995). However, the utility of this ligand in rat brain has not yet been demonstrated.

Because comprehensive study of a novel receptor system in brain requires the ability to selectively visualize the receptor protein, as well as receptor mRNA, the utility of [3 H]PD 128907 as a D $_3$ -selective agent was evaluated. The pharmacological profile, guanyl nucleotide regulation, and regional distribution of [3 H]PD 128907–labeled sites in rat brain are described and assessed using receptor binding and quantitative autoradiographic methods.

MATERIALS AND METHODS

[3H]PD 128907 Binding Assays

The [3H]PD 128907 binding assays were performed according to a modification of the methods of Akunne et al. (1995). Discrete brain regions were isolated by freehand dissection on ice from the brains of adult male Sprague-Dawley rats (Harlan Bioproducts, Indianapolis, IN). Brain tissue was homogenized with a PRO250 Homogenizer (setting 4 of 6) for 10 s in 20 volumes of assay buffer (50 mmol/L Tris, 1 mmol/L EDTA; pH 7.4). The crude homogenate was centrifuged twice at 48,000 \times g for 15 min, resuspending the pellet in 20 volumes of assay buffer each time. The final pellet from membrane preparation was resuspended in buffer to yield a final concentration of 10 mg original wet weight (o.w.w.)/ ml. Binding assays were performed in duplicate in disposable polystyrene tubes. The final assay volume was 0.5 ml. For binding site saturation studies, 8–10 concentrations of (+)-[N-propyl-2,3-3H]PD 128907 (116 Ci/ mmol; Amersham, Arlington Heights, IL) were used. For all other studies, the final concentration of [³H]PD 128907 was \sim 0.3 nmol/L. Unless otherwise noted, ventral striatal (nucleus accumbens and olfactory tubercle) membranes were incubated with [3H]PD 128907 and various concentrations of competing drugs (RBI, Natick, MA) or 5'-guanylyl-imidodiphosphate (Gpp(NH)p) (Sigma, St. Louis, MO). Binding was initiated by the ad-

dition of membrane homogenate. Nonspecific binding was defined by 10 µmol/L quinpirole. Preliminary experiments indicated the optimal incubation time at 23°C to be 3 h. The reaction was terminated by rapid filtration through Whatman GF/B filters pretreated with 0.5% polyethyleneimine using a Brandel cell harvester. Filters were washed 3 times with 3 ml ice-cold buffer (50 mmol/L Tris; pH 7.4 at 23°C), and placed in scintillation vials. After the addition of Beckman Ready Protein+ scintillation cocktail, vials were shaken, allowed to equilibrate for 2 h, and radioactivity quantitated using a Beckman 6500 scintillation counter. Protein concentrations were determined using the BCA method (Pierce, Rockford, IL). Specific binding of [3H]PD 128907 is expressed as fmol/mg protein. Data from saturation and competition experiments were analyzed using the nonlinear least-squares curve-fitting program LIGAND. Results are expressed as the mean \pm SE.

[3H](+)-7-OH-DPAT Binding Assays

Assays were performed as described for [3 H]PD 128907 (see above) with the following exceptions. Membranes were prepared in assay buffer (50 mmol/L HEPES, 1 mmol/L EDTA; pH 7.4, at 4°C) to yield a final concentration of 7.5 mg o.w.w./ml. The concentration of [3 H] (+)-7-OH-DPAT (139 Ci/mmol; Amersham, Arlington Heights, IL) was \sim 0.2 nmol/L for single point assays. Nonspecific binding was defined by 10 μ mol/L quinpirole. Preliminary experiments indicated the optimal incubation time at 23°C to be 1 h. Bound ligand was separated from free by rapid filtration through untreated Whatman GF/B filters. The wash buffer was 50 mmol/L Tris, 120 mmol/L NaCl; pH 7.4 at 23°C.

Receptor Autoradiography with [3H]PD 128907

Adult male Sprague-Dawley (200–300 g; Charles River Laboratories, Wilmington, DE) were killed by decapitation, brains rapidly removed, frozen in isopentane, and stored at -70°C until sectioning. Sagittal and coronal brain sections (20 μm) were cut on a cryostat, thawmounted onto chrome-alum/gelatin-coated slides and stored at -70°C until use.

[³H]PD 128907 autoradiography was performed according to a modification of methods previously described (Levant et al. 1993). Optimal assay conditions were determined in preliminary wash-out and association experiments. Slide-mounted brain sections were brought to room temperature and allowed to dry thoroughly. Duplicate sections from the same animal were used for each data point. Slides were incubated with ~0.7 nmol/L [³H]PD 128907 in assay buffer (50 mmol/L Tris, 1 mmol/L EDTA, pH 7.4 at 23°C) for 2 h at 23°C. Nonspecific binding was defined in the presence of 1 μmol/L spiperone. After incubation, slides were dipped

in ice-cold assay buffer, washed for two consecutive 2-min periods in ice-cold assay buffer, dipped in icecold deionized H₂O, and dried under a cool air stream. Radiolabeled sections were subsequently apposed to ³H-Hyperfilm (Amersham, Arlington Heights, IL) with 20 μm [³H]methylmethacrylate autoradiographic standards (Amersham, Arlington Heights, IL) for a period of 12 weeks. ³H-Hyperfilm was developed according to the manufacturer's instructions. Brain sections were then stained with cresyl violet.

Autoradiographic images were digitized and quantified using the Macintosh-based video densitometry program NIH "Image" version 1.4. Best-fit curves of optical density generated by the [3H]methylmethacrylate autoradiographic standards resulted when a Rodbard plot was used to describe the relationship between optical density and radioactivity. Brain regions were identified according to the atlas of Paxinos and Watson (1986). Autoradiograms of coronal sections were sampled bilaterally. Measurements represent average pixel optical density by volume analysis. Results, expressed as fmol/mg tissue equivalent were not corrected for differential quenching by white and gray matter. Digitized images of autoradiograms from Image were used to generate the figures presented in this article.

RESULTS

Radioligand-Binding Studies

Preliminary Studies of [3H]PD 128907 Binding in Ventral Striatal Membranes. Preliminary studies were performed to determine the optimal tissue concentration and length of incubation (data not shown). When used at a concentration equal to the K_D value (\sim 0.3 nmol/L), [3H]PD 128907 binding reached steady state within 3 h at 23°C. At a final tissue concentration of 10 mg o.w.w./ ml, less than 3% of the total [3H]PD 128907 was bound at steady state. Specific binding represented 60% of the total [3H]PD 128907 bound.

Saturation Analysis of $[^3H]PD$ 128907 and $[^3H](+)$ -7-OH-DPAT Binding. Binding site saturation analyses were performed with $[^{3}H]PD$ 128907 and $[^{3}H](+)$ -7-OH-DPAT in ventral striatal (nucleus accumbens and olfactory tubercle) membranes. Analysis by LIGAND for [3H]PD 128907 (0.01-3 nmol/L) revealed a single binding site with a K_D value of 0.30 \pm 0.02 nmol/L and a B_{max} value of 26 \pm 2.1 fmol/mg of protein (Figure 1). Binding of $[^{3}H](+)$ -7-OH-DPAT (0.01–3 nmol/L) was consistent with interactions at a single site with a K_D value of 0.18 \pm 0.01 nmol/L and a B_{max} value of 36 \pm 2.1 fmol/mg of protein (Table 1).

To evaluate the D₂/D₃ selectivity of [³H]PD 128907 and [3H](+)-7-OH-DPAT, saturation studies were performed in caudate/putamen, a brain area that expresses the D₂ receptor predominantly over the other D₂-related subtypes (for review, see Levant 1996). Saturation analysis of [3H]PD 128907 binding in caudate/putamen was performed using significantly higher concentrations of radioligand (0.5-75 nmol/L) than those used to assess putative D₃ binding. These studies revealed no specific binding of [3H]PD 128907 in caudate/putamen above that attributable to the low levels of putative D₃ binding observed in that tissue.

Saturation analysis of [3H](+)-7-OH-DPAT in caudate/putamen was also performed using significantly

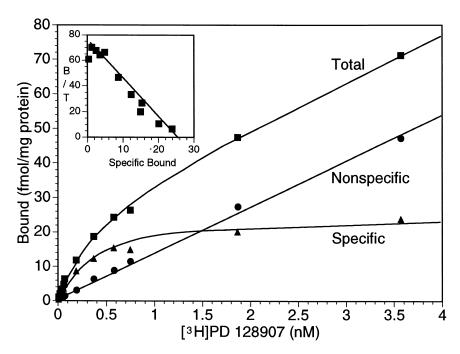


Figure 1. Saturation isotherms of [3H]PD 128907 binding in rat ventral striatal membranes. Membranes were incubated with 11 concentrations of $[^{3}H]PD$ 128907 (0.01–3 nmol/L) as described in Materials and Methods. Nonspecific binding was defined in the presence of 10 µmol/L quinpirole. Three independent determinations yielded a K_D value of 0.30 \pm 0.02 nmol/L and a B_{max} value of 26 \pm 2.1 fmol/mg protein as estimated by the nonlinear least-squares curve fitting program LIGAND. Data from all saturation analyses were consistent with the interaction of the radioligand with a single binding site. Representative results are shown.

Table 1. Affinity and Density of Sites Labeled by [³H]PD 128907 and [³H](+)-7-OH-DPAT in Rat Ventral Striatum and Caudate/Putamen

Radioligand	K _D (nmol/L)	B _{max} (fmol/mg protein)
Ventral striatum		
[³ H]PD 128907	0.30 ± 0.02	26 ± 2.1
[³ H](+)-7-OH-DPAT	0.18 ± 0.01	36 ± 2.1
Caudate/putamen		
[³ H]PD 128907	ND	ND
[³ H](+)-7-OH-DPAT	$23 \pm 1.5 \text{nM}$	218 ± 5.7

Membranes were incubated with 9–11 concentrations of [3 H]PD 128907 or [3 H](+)-7-OH-DPAT (0.01–3 nmol/L in ventral striatum, 0.5–75 nmol/L in caudate/putamen) as described in Materials and Methods. Nonspecific binding was defined in the presence of 10 μ mol/L quinpirole. Data represent the mean \pm SEM of three independent determinations as estimated by the nonlinear least-squares curve fitting program LIGAND. Data from all saturation analyses were consistent with the interaction of the radioligand with a single binding site. ND = not detected.

higher concentrations of radioligand (0.5–75 nmol/L) than those used to assess putative D_3 binding. In addition to the very low levels of binding attributable to the putative D_3 site, these studies indicated the labeling of a single site with a K_D value of 23 \pm 1.5 nmol/L and a B_{max} value of 218 \pm 5.7 fmol/mg protein.

Pharmacological Profile of [3H]PD 128907 and [3H](+)-7-OH-DPAT Binding Sites. The pharmacological profiles of [3H]PD 128907- and [3H](+)-7-OH-DPAT-labeled sites were determined in ventral striatal membranes using a variety of dopaminergic drugs including those shown to possess significant D_2/D_3 selectivity in previous studies (Sokoloff et al. 1990; Lévesque et al. 1992; Levant and De Souza 1993; Akunne et al. 1995) (Table 2). Dopamine agonists exhibited the following rank order of potency in competition with [${}^{3}H$]PD 128907: (\pm)-7-OH-DPAT \approx (+)-PD 128907 \approx quinpirole > dopamine. A similar rank order of potency was observed in competition with [3 H](+)-7-OH-DPAT: (+)-PD 128907 \geq (±)-7-OH-DPAT ≈ quinpirole \geq dopamine. In competition with [3H]PD 128907, dopamine antagonists inhibited binding with the following rank order of potency: spiperone > (+)-butaclamol \ge haloperidol \approx domperidone > SCH 23390 (Figure 2). Antagonists inhibited binding of [3H](+)-7-OH-DPAT with a similar rank order: spiperone > (+)-butaclamol \ge domperidone > haloperidol > SCH 23390. Overall, dopamine agonists and antagonists exhibited highly similar rank order of potencies in competition with [3H]PD 128907 and [3H](+)-7-OH-DPAT and had a correlation coefficient of 0.707 (Table 2).

Because previous studies have suggested an interaction of [³H]7-OH-DPAT with the sigma site (Wallace and Booze 1995), the affinity of sigma₁ ligand N-allyl-

Table 2. Pharmacological Profile of Sites Labeled by [³H]PD 128907 and [³H](+)-7-OH-DPAT

	K _i (nmol/L)		
Drug	[³ H]PD 128907	[³ H](+)-7-OH- DPAT	
Dopamine agonists			
(+)-PD 128907	0.53 ± 0.11	0.73 ± 0.17	
(±)-7-OH-DPAT	0.42 ± 0.06	1.1 ± 0.38	
Quinpirole	0.74 ± 0.07	2.0 ± 0.16	
Dopamine	20 ± 2	5.5 ± 1.0	
Dopamine antagonists			
Spiperone	1.0 ± 0.11	0.59 ± 0.04	
(+)-Butaclamol	14 ± 2.0	5.5 ± 1.2	
Domperidone	34 ± 5.7	9.6 ± 1.1	
Haloperidol	24 ± 3.1	36 ± 4.0	
SCH 23390	610 ± 129	303 ± 54	
Other			
(+)-N-allylnormetazocine	>100,000	>100,000	

Membrane homogenates were incubated with [3 H]PD 128907 (\sim 0.3 nmol/L) or [3 H](+)-7-OH-DPAT (\sim 0.2 nmol/L) and up 11 concentrations of competing drug ($^{10^{-11}}$ to $^{10^{-4}}$ mol/L) as described in Materials and Methods. [3 H]PD 128907 and [3 H](+)-7-OH-DPAT binding assays were performed using ventral striatum and nonspecific binding was defined using 10 10 mmol/L quinpirole. Data were analyzed using the nonlinear, least-squares curve fitting program LIGAND and represent the mean $^{\pm}$ SEM of three to four independent determinations. Data from all competition studies were consistent with the interaction of each ligand with a single binding site.

normetazocine for [3 H]PD 128907– and [3 H](+)-7-OH-DPAT–labeled sites was determined. N-allylnormetazocine had negligible affinity in competition for either putatively D_{3} -selective ligand.

In all instances, competition data were consistent with interactions at a single binding site as analyzed by LIGAND. Because the density of [³H]PD 128907– and [³H](+)-7-OH-DPAT–labeled sites in other brain regions was quite low (see below), pharmacological characterization of sites in other brain areas was not undertaken.

Guanyl Nucleotide Regulation of [3 H]PD 128907 and [3 H]($^+$)-7-OH-DPAT Binding. In the presence of the nonhydrolyzable GTP analog, Gpp(NH)p (0.1 mmol/L), 99 \pm 6% of total specific [3 H]PD 128907 binding was observed in ventral striatal membranes. Similarly, 96 \pm 4% of total specific [3 H]($^+$)-7-OH-DPAT binding was observed in the presence of 0.1 mmol/L Gpp(NH)p. Because the density of [3 H]PD 128907– and [3 H]($^+$)-7-OH-DPAT–labeled sites in other brain regions was quite low (see below), assessment of the guanyl nucleotide regulation of sites in other brain areas was not undertaken.

Regional Distribution of [³H]PD 128907 and [³H](+)-7-OH-DPAT Binding. Preliminary studies of [³H]PD 128907 and [³H](+)-7-OH-DPAT binding in caudate/putamen and vestibulocerebellum revealed interactions

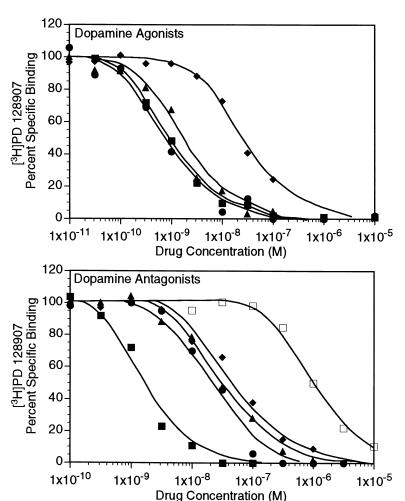
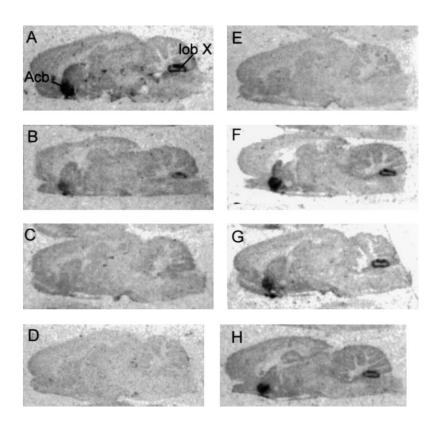


Figure 2. Competition of [³H]PD 128907 binding by dopamine agonists and antagonists. Rat ventral striatal membranes were incubated with ~0.3 nmol/L [3H]PD 128907 and up to 11 concentrations of competing drug (10⁻¹¹ to 10⁻⁵ mol/L) as described in Materials and Methods. Data were analyzed and competition curves generated using the nonlinear least-squares curve fitting program LIGAND. Representative results are shown. The quantitative data from these studies are summarized in Table 1. Dopamine agonists: ▲, PD 128907; ■, 7-OH-DPAT; ●, quinpirole; ◆, dopamine. Dopamine antagonists: \blacksquare , spiperone; \bullet , (+)butaclamol; \blacktriangle , domperidone; ♦, haloperidol; □, SCH 23390.


with a single binding site of similar K_D value to those observed in ventral striatum and of relative density similar to that described below (data not shown). Accordingly, single-point binding analysis was used to examine the regional distribution of the binding sites for these radioligands.

Sites labeled by [3H]PD 128907 and [3H](+)-7-OH-DPAT exhibited similar regional distributions in rat brain (Table 3). Binding of both radioligands was highest in ventral striatum (nucleus accumbens and olfactory tubercles), followed by the vestibulocerebellum. Moderate levels of $[^3H]PD$ 128907 and $[^3H](+)$ -7-OH-DPAT were observed in the caudate/putamen, hypothalamus, and substantia nigra/ventral tegmental area. Moderately low to low densities of sites were detected in frontal cortex, amygdala, hippocampus, and dorsal vermis. Overall, the regional distributions of sites labeled by these radioligands was highly correlated ($r^2 =$

The regional distribution of [3H]PD 128907- and [3H](+)-7-OH-DPAT-labeled sites was compared with sites labeled by the D₂/D₃ agonist ligand [³H]quinpirole. The density of [3H]quinpirole-labeled sites in brain areas such as the caudate/putamen, ventral striatum, and substantia/nigra/ventral tegmental area was significantly higher than those labeled by either [3H]PD 128907 or [3H](+)-7-OH-DPAT. The correlation coefficients for the regional distribution of [3H]quinpirolelabeled sites with those labeled by [3H]PD 128907 and [³H]7-OH-DPAT were 0.138 and 0.292, respectively.

Autoradiographic Studies

Substrate Specificity of [3H]PD 128907 Binding in *Slide-Mounted Brain Sections.* The relative potencies of several compounds at [3H]PD 128907 binding sites in sagittal sections of rat brain are depicted in Figure 3. These data are quantified in Figure 4. Overall, comparable substrate specificity of [3H]PD 128907 binding was obtained in autoradiographic studies in nucleus accumbens and the molecular layer of cerebellar lobule X (Figure 4). (\pm)-7-OH-DPAT (10 μ mol/L), spiperone (1 μmol/L), and (+)-butaclamol (1 μmol/L) each inhibited [3H]PD 128907 to identical baseline levels in both brain areas examined. The potencies of (±)-7-OH-DPAT and SCH 23390 were similar to that observed in radioligand binding studies with IC50 values of roughly

Figure 3. Substrate specificity of [³H]PD 128907–labeled sites in rat brain. Slide-mounted sagittal sections (lateral 1.20–1.40 mm) were incubated with 0.7 nmol/L [³H]PD 128907 in the presence of absence of various compounds as indicated. **(A)** total binding, **(B)** (±)-7-OH-DPAT (0.5 nmol/L), **(C)** (±)-7-OH-DPAT (10 nmol/L), **(D)** spiperone (1 μmol/L), **(E)** (+)-butaclamol (1 μmol/L), **(F)** (−)-butaclamol (1 μmol/L), **(G)** SCH 23390 (1 μmol/L), **(H)** Gpp(NH)p (1 mmol/L). Acb = nucleus accumbens, lob X = cerebellar lobule X. Quantified data from these autoradiograms is shown in Figure 4.

0.5 nmol/L and 1 μ mol/L, respectively. (–)-Butaclamol (1 μ mol/L) and Gpp(NH)p (1 mmol/L) failed to inhibit [3 H]PD 128907 in either nucleus accumbens or cerebellar lobule X.

Autoradiographic Localization of [³H]PD 128907–Labeled Sites. The distribution of [³H]PD 128907–labeled sites in rat brain is shown in Figure 5. Quantitative analy-

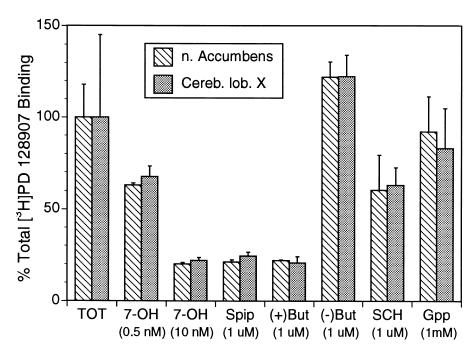

sis of regional [³H]PD 128907 binding appears in Table 4. Specific [³H]PD 128907 binding was heterogeneously distributed throughout the brain with highest densities (>10 fmol/mg tissue equiv.) observed in the islands of Calleja, followed by the nucleus accumbens. Within the nucleus accumbens, somewhat more [³H]PD 128907 binding was observed in the shell than in the core. Dense binding was also observed in the nucleus of the horizon-

Table 3. Regional Distribution of [³H]PD 128907 and [³H](+)-7-OH-DPAT Binding in Rat Brain Membranes: Comparison with the Distribution of [³H] Quinpirole–Labeled Sites

	Specific Binding (fmol/mg protein)			
Brain Region	[³H]PD 128907	[³H]7-OH-DPAT	[³ H]Quinpirole ^a	
Ventral striatum	12 ± 1.0	9.6 ± 1.7	42	
Vestibulocerebellum	5.0 ± 1.1	6.5 ± 0.96	_	
Hypothalamus	3.4 ± 0.46	3.6 ± 0.87	7	
Caudate/putamen	2.3 ± 0.40	4.4 ± 0.39	85	
Substantia nigra/VTA	2.0 ± 0.41	3.7 ± 0.29	12	
Amygdala	1.8 ± 0.32	2.7 ± 0.19	4	
Frontal cortex	1.4 ± 0.30	1.8 ± 0.13	4	
Dorsal vermis	0.71 ± 0.28	2.1 ± 0.32	2	
Hippocampus	0.25 ± 0.17	1.4 ± 0.32	3	

Membranes prepared from specific rat brain regions were assayed for [³H]PD 128907 or [³H]7-OH-DPAT as described in Materials and Methods. The concentrations of [³H]PD 128907 and [³H]7-OH-DPAT \sim 0.3 nmol/L and \sim 0.2 nmol/L, respectively. Nonspecific binding was defined by 10 μ mol/L quinpirole. Data shown represent the mean \pm SEM of three independent determinations. Ventral striatum = nucleus accumbens and olfactory tubercle. VTA = ventral tegmental area.

^aData represent the mean to two independent determinations performed with identical results as reported in Levant et al. 1992.

Figure 4. Quantification of [³H]PD 128907–labeled sites in specific brain regions in the presence of various compounds. Film images in Figure 3 were digitized and quantified as described in Materials and Methods. Each data point represents the mean ± SEM obtained from four slides (two sections per slide). TOT = total binding; 7-OH = (\pm) -7-OH-DPAT; Spip = spiperone; (+)But = (+)-butaclamol; (-)But = (-)-butaclamol; SCH = SCH 23390; Gpp = Gpp(NH)p.

tal limb of the diagonal band. Moderate densities of [³H]PD 128907 binding (5–10 fmol/mg tissue equiv.) were observed in the molecular layer of cerebellar lobule X, olfactory tubercle, ventral pallidum, substantia nigra pars compacta, and caudate/putamen. [3H]PD 128907 binding in the caudate/putamen, however, was not uniform with greater binding observed in the anteroventral and dorsomedial portions of the nucleus with relatively little binding in the dorsal portion. Low to very low densities of [3H]PD 128907 binding (<5 fmol/mg tissue equiv.) were observed in the other brain region examined such as the hypothalamus, thalamus, amygdala, cortical areas excluding piriform, cerebellum excluding the molecular layer of lobule X, olfactory bulb, and hippocampus. No differential labeling of cell layers of the hippocampus and dentate gyrus was observed.

DISCUSSION

Because of the potential therapeutic importance of the dopamine D₃ site (Sokoloff et al. 1990; Caine and Koob 1993), considerable effort has been directed toward understanding its neurobiology. To this end, several radioligands purported to be D₃ selective have been identified including [3H]PD 128907 and [3H]7-OH-DPAT. Before extensive study of this novel receptor in brain may be undertaken, however, the ability of radioligands to distinguish between closely related dopamine receptor subtypes, as well as other receptors, must be demonstrated. The present study assesses the D₃ selectivity of [³H]PD 128907 in rat brain and uses this radioligand to characterize the pharmacological profile, guanyl nucleotide regulation, and regional distribution of putative D₃ sites.

Receptor binding analysis revealed that, under the in vitro assay conditions used in this study, [3H]PD 128907 exhibited a binding profile in rat brain consistent with interactions at a single binding site. The pharmacological profile of [3H]PD 128907-labeled sites labeled was similar to that of $[^{3}H](+)$ -7-OH-DPAT, suggesting that these ligands label a common D₂-like binding site. Whereas the pharmacology of these sites was similar to that of the classic D₂ receptor (for review, see Seeman and Grigoriadis 1987; Sibley and Monsma 1992), sites labeled by the putative D₃-selective ligands differ from the D_2 receptor in that [3H]PD 128907– and [3H](+)-7-OH-DPAT-labeled sites are present in lower density, display a different regional distribution, and are insensitive to guanyl nucleotides. Thus, neither ligand appears to interact significantly with the D₂ receptor under the assay conditions used in this study.

Instead, sites labeled by [³H]PD 128907 and [³H](+)-7-OH-DPAT display characteristics similar to those reported for the cloned D₃ receptor in expression systems in terms of pharmacological profile and apparent insensitivity to guanyl nucleotides (Boundy et al. 1993; Freedman et al. 1994; MacKenzie et al. 1994; Sokoloff et al. 1990, 1992). Furthermore, the densities and regional distributions of [3H]7-OH-DPAT- and [3H]PD 128907labeled sites in rat brain are generally consistent with the distribution of D₃ receptor mRNA (Bouthenet et al. 1991) and the distribution of D₃ receptor binding estimated from experiments using nonselective radioli-

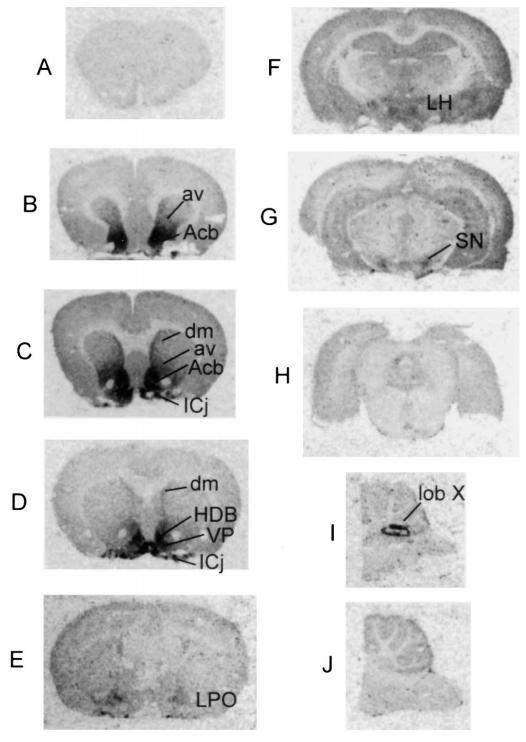


Figure 5. Autoradiographic localization of [3 H]PD 128907–labeled sites in rat brain. Data shown represent total binding. Specific autoradiograms are representative of those obtained from each of four individual animals (two sections per slide). The darker areas of the autoradiograms indicate regions of higher receptor density. Slide-mounted brain sections (20 μ m) were incubated with \sim 0.7 nmol/L [3 H]PD 128907 as described in Materials and Methods. Nonspecific binding, as defined by 1 μ m spiperone, 1 μ m (+)-butaclamol, or 10 μ m (2 -7-OH-DPAT is shown in Figure 3. Quantified data from these autoradiograms are summarized in Table 4. Stereotaxic coordinates for each level: (A) Bregma 4.20 mm, (B) Bregma 2.20 mm, (C) Bregma 1.30 mm, (D) Bregma 0.48, (E) $^{-0.30}$ mm, (F) Bregma $^{-3.60}$ mm, (G) Bregma $^{-4.80}$ mm, (H) Bregma $^{-7.64}$ mm, (I) Lateral 0.40 mm, (J) Lateral 2.40 mm. Abbreviations: Acb = nucleus accumbens, av = anteroventral caudate/putamen, dm = dorsomedial caudate/putamen, ICj = islands of Calleja, HDB = nucleus of the horizontal limb of the diagonal band, VP = ventral pallidum, LPO = lateral preoptic area, LH = lateral hypothalamus, SN = substantia nigra, lob X = cerebellar lobule X.

Table 4. Autoradiographic Distribution of [3H]PD 128907–Labeled Sites Rat Brain

Brain Region	[³H]PD 128907 Specific Binding fmol/mg Tissue Equivalent
Cerebral cortex	
Frontal	0.32 ± 0.32
Cingulate	0.90 ± 0.60
Parietal	1.3 ± 0.65
Piriform	2.9 ± 0.90
Temporal	0.60 ± 0.38
Entorhinal	0.85 ± 0.60
Olfactory tubercles	8.1 ± 2.1
Islands of Calleja	60 ± 14
Nucleus accumbens	
Core	16 ± 3.2
Shell	23 ± 4.0
Caudate/Putamen	
Dorsomedial	5.1 ± 0.38
Anterovental	7.3 ± 1.9
Dorsal	1.6 ± 1.2
Ventral pallidum	7.3 ± 2.5
Globus pallidus	1.5 ± 0.75
Septal area	1.4 ± 0.60
Nucleus of the vertical limb of the diagonal band	1.7 ± 0.80
Nucleus of the horizontal limb of the diagonal band	11 ± 4.2
Bed nucleus of the stria terminalis	3.5 ± 1.3
Medial preoptic area	3.8 ± 2.9
Magnocellular preoptic nucleus	3.5 ± 1.6
Thalamus	10 + 10
Mediodorsal	1.9 ± 1.0
Ventrolateral	1.2 ± 0.54
Hypothalamus	12+054
Arcuate nucleus Ventromedial nucleus	1.2 ± 0.54
Anterior area	0.75 ± 0.32 2.3 ± 1.3
Lateral area	2.3 ± 1.3 2.4 ± 0.99
Medial mammallary nucleus	3.4 ± 0.49
Medial and lateral geniculate nuclei	0.95 ± 0.49
Amygdala	1.5 ± 0.85
Hippocampus	1.0 = 0.00
CA1	0.95 ± 0.38
CA2	0.80 ± 0.38
CA3	1.0 ± 0.44
Dentate gyrus	0.90 ± 0.44
Subiculum	1.09 ± 0.99
Substantia nigra	
Pars compacta	5.2 ± 0.08
Pars reticulata	3.5 ± 0.27
Ventral tegmental area	2.1 ± 0.99
Periaqueductal gray	0.85 ± 1.2
Superior colliculus	0.80 ± 0.54
Raphe nucleus	0.21 ± 0.15
Medial lemniscus	1.42 ± 0.85
Ventral lateral lemniscus	ND
Pontine nucleus	0.27 ± 0.21
Cerebellum	
cortex, lateral lobe	0.32 ± 0.27
cortex, vermis	0.60 ± 0.21
Lobule X - molecular layer	9.6 ± 4.8
Brain stem	0.32 ± 0.21

Data were derived from quantification of autoradiograms produced from four animals and are expressed at the mean \pm SEM. Coronal sections (two per slide) were incubated with \sim 0.7 nmol/L [3 H]PD 128907. Nonspecific binding was defined in the presence of 1 µmol/L spiperone. The unit of receptor density (fmol/mg tissue equiv.) is that supplied by the manufacturer of [3H]methylmethacrylate autoradiography standards (Amersham). The results have not been corrected for differential quenching of tritium by gray and white matter and may thus underestimate the densities of binding sites in brain regions having a higher proportion of white matter. ND = not detected.

gands (Landwehrmeyer et al. 1992; Levant et al. 1993; Parsons et al. 1993; Booze and Wallace 1995). Taken together, the present data suggest the interaction of these radioligands with a common binding site with the characteristics of the D_3 dopamine receptor.

Thus, in our hands, both $[^3H]PD$ 128907 and $[^3H](+)$ -7-OH-DPAT label the putative D₃ site in rat brain. Although both ligands exhibited high affinity, they differed in their selectivity between the D₂ and D₃ sites. Saturation analysis using high concentrations of [3H]PD 128907 (0.5–75 nmol/L) in caudate/putamen, a brain area that expresses D₂ receptor predominantly over other D₂-related subtypes (for review, see Levant 1996), indicated no binding above that attributable to the low density of putative D₃ sites present in that tissue. Thus, the affinity of this radioligand for the D₂ receptor is sufficiently low to preclude determination by filtration assay (i.e., $K_D > 100 \text{ nmol/L}$) (Bennett and Yamamura 1985). As such, it is concluded that the D_2/D_3 receptor selectivity of this radioligand is significantly greater than 300-fold and that labeling of D₂ receptors is negligible under the in vitro assay conditions used in this study. In contrast, similar saturation studies with [3H](+)-7-OH-DPAT revealed binding to a site in caudate/putamen of appropriate density for the D₂ receptor (Levant 1995; Levant et al. 1992) with a K_D value of 23 nmol/L. Thus, $[^{3}H](+)$ -7-OH-DPAT exhibits only about 100-fold selectivity for the putative D₃ receptor over the D₂ under the in vitro assay conditions used in this study.

Interactions of [³H]7-OH-DPAT with the sigma site have also been reported (Wallace and Booze 1995). The low potency of the sigma₁ ligand (+)N-allylnormetazocine in the radioligand binding studies, however, suggests no such interaction for either [³H](+)-7-OH-DPAT or [³H]PD 128907 under the in vitro conditions used in our radioligand binding studies. Likewise, autoradiographic localization of [³H]PD 128907 binding sites indicated very low density of labeling in regions noted for dense expression of sigma sites such as the cerebellar cortex (Gundlach et al. 1986).

Whereas the present data indicate that selective labeling of putative D₃ sites may be reasonably obtained using either [3H]PD 128907 and [3H]7-OH-DPAT, labeling of the D₂ site by [³H]7-OH-DPAT has been reported (Gonzales and Sibley 1995). One likely factor contributing to the conflicting reports of the D_2/D_3 -selectivity of [3H]7-OH-DPAT is the use of different in vitro assay conditions. Assay conditions, particularly buffer composition, have been shown to influence the D_2/D_3 selectivity of this ligand in vitro (Lévesque et al. 1992; Burris et al. 1995). Specifically, the greatest D_2/D_3 selectivity with [3H]7-OH-DPAT was obtained in the absence of Mg²⁺ and the presence of EDTA. Buffer systems excluding Mg²⁺ and containing EDTA were also selected for [3H]PD 128907 (Akunne et al. 1995). We have found that specific binding of [3H]quinpirole in striatal membranes

was nearly abolished in a Tris-EDTA buffer system (unpublished observation), in concordance with previous studies indicating that the high affinity agonist state of D₂-like receptors is not favored in the absence of Mg²⁺ (Sibley and Creese 1983). Because selective visualization of the putative D₃ receptor appears to require in vitro assay conditions that disfavor D₂ binding, these conditions may also affect the binding or functional properties of the D₃ receptor. For example, the failure of guanyl nucleotides to inhibit [3H]7-OH-DPAT and [3H]PD 128907 binding could result from a lack of coupling of the receptors to G-proteins. Alternatively, although the binding of agonist ligands such as [3H]PD 128907 and [3H]7-OH-DPAT is presumed to be to receptors in the high affinity agonist state, this observation might also result if the labeled receptors were actually in the low affinity agonist conformation. Accordingly, care must be taken in the interpretation of data obtained with these methods with regard to their physiological implications.

The distribution of putative D₃ sites in brain has been of particular interest and is the primary basis for the hypothesis that receptor may be a suitable target for novel antipsychotics (Sokoloff et al. 1990). The present data confirm previous studies indicating highest densities of putative D₃ sites in the islands of Calleja followed by the nucleus accumbens as assessed by either radioligand binding or autoradiographic methods. Dense labeling by [3H]PD 128907 has also been reported in the nucleus accumbens and islands of Calleja of the human brain (Hall et al. 1996). As predicted by the distribution of D₃ receptor mRNA (Bouthenet et al. 1991; Curran and Watson 1995; Diaz et al. 1995; Landwehrmeyer et al. 1993; Mengod et al. 1992; Sokoloff et al. 1990), several other brain areas, such as the molecular layer of cerebellar lobule X, ventral pallidum, substantia nigra pars compacta, bed nucleus of the stria terminalis, medial and magnocellular preoptic areas, and nucleus of the horizontal limb of the diagonal band also exhibited moderately dense labeling by [3H]PD 128907.

Whereas the density of D_3 sites in caudate/putamen were low overall, the sites are differentially distributed within the nucleus and are moderately dense in the dorsomedial and anteroventral areas. The presence of moderately dense putative D_3 binding in the "limbic" anterovental striatum is consistent with the similar afferent input as the nucleus accumbens from the allomeso, and periallocortices as well as the ventral tegmental area, basolateral amygdala, hippocampus, and prefrontal cortex (Heimer et al. 1995). The presence of D_3 sites in the dorsomedial aspect of the caudate, which also receives afferent from the mesocortex (Heimer et al. 1995), was suggested by previous studies using [3 H]quinpirole (Levant et al. 1993).

Whereas dense [³H]PD 128907 binding was observed in brain areas such as the islands of Calleja and nucleus

accumbens where dense expression of D₃ receptor mRNA has been reported, the observed densities of putative D₃ sites and the reported densities of D₃ mRNA were not directly correlated throughout the brain. For example, very dense expression of D₃ mRNA expression was reported in areas such as cerebellar lobule X and the bed nucleus of the stria terminalis (Bouthenet et al. 1991) but only moderately dense [3H]PD 128907 binding was observed in these regions. Other notable discrepancies in the distributions of D₃ mRNA and binding include the medial geniculate nucleus, pyramidal cell layer of the hippocampus, granular layer of the dentate gyrus, and certain thalamic and amygdaloid nuclei where moderate to dense expression of D₃ mRNA were observed (Bouthenet et al. 1991), but relatively little putative D₃ binding. These discrepancies may be due to the transport of receptors to brain regions remote from cell bodies or the differential regulation of transcription and translation in different brain areas. This issue must be resolved by further study.

In summary, the present data demonstrate the binding of [3H]PD 128907 to dopaminergic binding sites in rat brain that are generally consistent with previous studies of the D₃ receptor with respect to density, pharmacological profile, guanyl nucleotide regulation. The regional distribution of [3H]PD 128907-labeled sites is similar those labeled by other putatively selective D₃ ligands with the highest density in limbic brain areas and is generally similar to the distribution of D₃ mRNA.

ACKNOWLEDGMENTS

The authors thank Carmita A. Coleman for expert technical assistance. This work was supported by NIMH MH 52839.

REFERENCES

- Akunne HC, Towers P, Ellis GJ, Dijkstra D, Wikstrom H, Heffner TG, Wise LD, Pugsley TA (1995): Characterization of binding of [3H]PD 128907, a selective dopamine D₃ receptor agonist ligand, to CHO-K1 cells. Life Sci 57:1401-1410
- Bennett JP, Yamamura HI (1985): Neurotransmitter, hormone, or drug receptor binding methods. In Yamamura HI, Enna SJ, Kuhar MJ (eds), Neurotransmitter Receptor Binding. New York, Raven Press, pp. 61-89
- Booze RM, Wallace DR (1995): Dopamine D₂ and D₃ receptors in the rat striatum and nucleus accumbens: use of 7-OH-DPAT and [125] iodosulpiride. Synapse 19:1-13
- Boundy VA, Luedtke RR, Gallitano AL, Smith JE, Filtz TM, Kallen RG, Molinoff PB (1993): Expression and characterization of the rat D₃ dopamine receptor: Pharmacologic properties and development of antibodies. J Pharmacol Exp Ther 264:1002–1011

- Bouthenet M-L, Souil E, Martres M-P, Sokoloff P, Giros B, Schwartz J-C (1991): Localization of dopamine D₃ receptor mRNA in the rat brain using in situ hybridization histochemistry: Comparison with dopamine D₂ receptor mRNA. Brain Res 564:302-319
- Burris KD, Pacheco MA, Filtz TM, Kung MP, Kung HF, Molinoff PB (1995): Lack of discrimination by agonists for D₂ and D₃ dopamine receptors. Neuropsychopharmacology 12:335-345
- Caine SB, Koob GF (1993): Modulation of cocaine selfadministration in the rat through D-3 dopamine receptors. Science 260:1814-1816
- Curran EJ, Watson SJ, Jr. (1995): Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: A double in situ hybridization study. J Comp Neurol 361:57-76
- Diaz J, Levesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, Sokoloff P (1995): Phenotypical characterization of neurons expressing the dopamine D₃ receptor in the rat brain. Neuroscience 65:731-745
- Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR, McAllister G (1994): Expression and pharmacological characterization of the human D₃ dopamine receptor. J Pharmacol Exp Ther 286:417-426
- Gonzales AM, Sibley DR (1995): [3H]7-OH-DPAT is capable of labeling dopamine D₂ as well as D₃ receptors. Eur J Pharmacol 272:R1–R3
- Gundlach AL, Largent BL, Snyder SH (1986): Autoradiographic localization of σ-receptor binding sites in guinea pig and rat central nervous system with (+)-3H-3-(3-hydroxyphenyl)-N-(1-propyl)-piperidine. J Neurosci 6:1757-1770
- Hall H, Haldin C, Dijkstra D, Wikstrom H, Wise LD, Pugsley TA, Sokoloff P, Pauli S, Farde L, Sedvall G (1996): Autoradiographic localisation of D₃-dopamine receptor in the human brain using the selective D₃-dopamine receptor agonist (+)-[3H]PD 128907. Psychopharmacology 128:240-247
- Heimer L, Zahm DS, Alheid GF (1995): Basal ganglia. In G Paxinos (ed), The Rat Central Nervous System. San Diego, CA, Academic Press, pp 579–628
- Landwehrmeyer B, Mengood G, Palacios JM (1993): Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 5:145-153
- Levant B (1995): Differential sensitivity of [3H]7-OH-DPATlabeled binding sites in rat brain to inactivation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Brain Res 698:146-154
- Levant B (1996): Distribution of dopamine receptor subtypes in the CNS. In TW Stone (ed), CNS Neurotransmitters and Neuromodulators, Dopamine. Boca Raton, FL, CRC Press, pp 77–87
- Levant B, De Souza EB (1993): Differential pharmacological profile of striatal and cerebellar dopamine receptors labeled by [3H]quinpirole: Identification of a discrete population of putative D₃ receptors. Synapse 14:90–95
- Levant B, Grigoriadis DE, De Souze EB (1992): Characterization of [3H]quinpirole binding to D₂-like dopamine receptors in rat brain. J Pharmacol Exp Ther 262:929-935

- Levant B, Grigoriadis DE, De Souza EB (1993): [3 H]Quinpirole binding to putative D_2 and D_3 dopamine receptors in rat brain and pituitary gland: A quantitative autoradiographic study. J Pharmacol Exp Ther 264:991–1001
- Lévesque D, Diaz J, Pilon C, Martres M-P, Giros B, Souil E, Schott D, Morgat J-L, Schwartz J-C, Sokoloff P (1992): Identification, characterization, and localization of the dopamine D₃ receptor in rat brain using 7-[³H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci USA 89:8155–8159
- MacKenzie RG, VanLeeuwen D, Pugsley TA, Shih Y-H, Demattos S, Tang L, Todd RD, O'Malley KL (1994): Characterization of the human D_3 receptor expressed in transfected cell lines. Eur J Pharmacol–Mol Pharmacol 266:79–85
- Mengod G, Villaro MT, Landwehrmeyer GB, Martinez Mir MI, Nizmik HB, Sunahara RK, Seeman P, O'Dowd BF, Probst A, Palacios JM (1992): Visualization of dopamine D₁, D₂ and D₃ receptor mRNAs in human and rat brain. Neurochem Int 20:33s–43s
- Parsons B, Stanley M, Javitch J (1993): Differential visualization of dopamine D_2 and D_3 receptors in rat brain. Eur J Pharmacol 234:269–272
- Paxinos G, Watson C (1986): The Rat Brain in Stereotaxic Coordinates. Sydney, Academic Press
- Pugsley TA, Davis MD, Akunne HC, MacKenzie RG, Shih YH, Damsma G, Wikstrom H, Whetzel SZ, Georgic LM,

- Cooke LW, Demaattos SB, Corbin AE, Glase SA, Wise LD, Dijkstra D, Heffner TG (1995): Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther 275:1355–1366
- Seeman P, Grigoriadis D (1987): Dopamine receptors in brain and periphery. Neurochem Int 10:1–25
- Sibley DR, Creese I (1983): Regulation of ligand binding to pituitary D_2 dopaminergic receptors. J Biol Chem 258: 4957-4965
- Sibley DR, Monsma FJ Jr (1992): Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69
- Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres M-P, Giros B, Schwartz J-C (1992): Pharmacology of human dopamine D₃ receptor expressed in a mammalian cell line: comparison with D₂ receptor. Eur J Pharmacol 225:331–337
- Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C (1990): Molecular cloning and characterization of a novel dopamine receptor (D₃) as a target for neuroleptics. Nature 347:146–151
- Stevens JR (1973): An anatomy of schizophrenia? Arch Gen Psychiatry 29:177–189
- Wallace DR, Booze RM (1995): Identification of D_3 and σ receptor in the rat striatum and nucleus accumbens using (±)-7-hydroxy-N.N-di-n-[3 H]propyl-2-aminotetralin and carbetapentane. J Neurochem 64:700–710